This article contains a solved example of the analysis and design of steel sheet pile walls in accordance with BS EN1997-1:2004 – Code of Practice for Geotechnical design and the UK National Annex.
Geometry
Total length of sheet pile provided Hpile = 14500 mm
Number of different types of soil Ns = 2
Retained height of soil dret = 3500 mm
Depth of unplanned excavation dex = 500 mm
Total retained height ds = 4000 mm
Angle of retained slope β = 0.0 deg
Depth from ground level to top of water table retained side dw = 1500 mm
Depth from ground level to top of water table retaining side; dwp = 4000 mm
Loading
Variable surcharge po,Q = 10.0 kN/m2
Soil layer 1
Characteristic shearing resistance angle ϕ’k,s1 = 30.0 deg
Characteristic wall friction angle δk,s1 = 20.0 deg
Moist density of soil γm,s1 = 15.0 kN/m3
Characteristic saturated density of retained soil γs,s1 = 17.0 kN/m3
Height of soil 1 h1 = 8500 mm
Soil layer 2
Characteristic shearing resistance angle f’k,s2 = 27.0 deg
Characteristic wall friction angle dk,s2 = 16.0 deg
Moist density of soil γm,s2 = 16.0 kN/m3
Characteristic saturated density of retained soil γs,s2 = 19.0 kN/m3
Height of soil 2 h2 = 7000 mm
Partial factors on actions – Section A.3.1 – Combination 1
Permanent unfavourable action γG = 1.35
Permanent favourable action γG,f = 1.00
Variable unfavourable action γQ = 1.50
Angle of shearing resistance γϕ’ = 1.00
Weight density γg = 1.00
Design soil properties – soil 1
Design effective shearing resistance angle ϕ’d = tan-1[tan(ϕ’k)/γϕ’] = 30.0 deg
Design wall friction angle δd = tan-1[tan(ϕk)/γϕ’] = 20.0 deg
Design moist density of retained soil γm.d1 = γm/γγ = 15.0 kN/m3
Design saturated density of retained soil γs.d1 = γs/γγ = 17.0 kN/m3
Design buoyant density of retained soil γd.d1 = γs.d1 – γw = 7.2 kN/m3
Active pressure using Coulomb theory Ka1 = sin(α + ϕ’d)2 / (sin(α)2 × sin(α – δd) × (1 + √(sin(ϕ’d + δd) × sin(ϕ’d – β)/(sin(α – δd) × sin(α + β))))2) = 0.297
Passive pressure using Coulomb theory Kp1 = sin(90 – ϕ’d)2 / (sin(90 + δd) × [1 – √[sin(ϕ’d + δd) × sin(ϕ’d) / (sin(90 + δd))]]2) = 6.105
Design soil properties – soil 2
Design effective shearing resistance angle ϕ’d = tan-1(tan(ϕ’k) /γϕ’) = 27.0 deg
Design wall friction angle δd = tan-1(tan(δk)/γϕ’) = 16.0 deg
Design moist density of retained soil γm.d2 = γm/γγ = 16.0 kN/m3
Design saturated density of retained soil γs.d2 = γs /γγ = 19.0 kN/m3
Design buoyant density of retained soil γd.d2 = γs.d2 – γw = 9.2 kN/m3
Active pressure using Coulomb theory Ka2 = sin(α + ϕ’d)2 / (sin(α)2 × sin(α – δd) × (1 + √(sin(ϕ’d + δd) × sin(ϕ’d – β) / (sin(α – δd) × sin(α + β))))2) = 0.336
Passive pressure using Coulomb theory Kp2 = sin(90 – ϕ’d)2 / (sin(90 + δd) × [1 – √[sin(ϕ’d + δd) × sin(ϕ’d) / (sin(90 + δd))]]2) = 4.416
Overburden on the active side
Overburden at 0 mm below GL in soil 1; OB’a11 = po,Q × γQ = 15.0 kN/m2
Overburden at 1500 mm below GL in soil 1; OB’a21 = γG × γm.d1 × ha1 + OB’a11 = 45.4 kN/m2
Overburden at 4000 mm below GL in soil 1; OB’a31 = γG × γd.d1 × ha2 + OB’a21 = 69.6 kN/m2
Overburden at 8500 mm below GL in soil 1; OB’a41 = γG × γd.d1 × ha3 + OB’a31 = 113.3 kN/m2
Overburden at 8500 mm below GL in soil 2; OB’a42 = γG × γd.d1 × ha3 + OB’a31 = 113.3 kN/m2
Overburden at 11544 mm below GL in soil 2; OB’a51 = γG × γd.d2 × ha4 + OB’a42 = 151.1 kN/m2
Overburden on the passive side
Overburden at 4000 mm below GL in soil 1; OB’p31 = 0 kN/m2 = 0.0 kN/m2
Overburden at 8500 mm below GL in soil 1; OB’p41 = γG,f × γd.d1 × hp3 + OB’p31 = 32.4 kN/m2
Overburden at 8500 mm below GL in soil 2; OB’p42 = γG,f × γd.d1 × hp3 + OB’p31 = 32.4 kN/m2
Overburden at 11544 mm below GL in soil 2; OB’p51 = γG,f × γd.d2 × hp4 + OB’p42 = 60.3 kN/m2
Pressure on the active side
Active at 0 mm below GL in soil 1; p’a11 = Ka1 × OB’a11 = 4.5 kN/m2
Active at 1500 mm below GL in soil 1; p’a21 = Ka1 × OB’a21 = 13.5 kN/m2
Active at 4000 mm below GL in soil 1; p’a31 = Ka1 × OB’a31 + γγ × γw × (dL3 – dw) = 53.8 kN/m2
Active at 8500 mm below GL in soil 1; p’a41 = Ka1 × OB’a41 + γγ × γw × (dL4 – dw) = 126.4 kN/m2
Active at 8500 mm below GL in soil 2; p’a42 = Ka2 × OB’a42 + γγ × γw × (dL4 – dw) = 130.8 kN/m2
Active at 11544 mm below GL in soil 2; p’a51 = Ka2 × OB’a51 + γγ × γw × (dL5 – dw) = 183.8 kN/m2
Pressure on the passive side
Passive at 4000 mm below GL in soil 1; p’p31 = Kp1 × OB’p31 + γG,f × γw × (dL3 – max(ds, dw)) = 0.0 kN/m2
Passive at 8500 mm below GL in soil 1; p’p41 = Kp1 × OB’p41 + γG,f × γw × (dL4 – max(ds, dw)) = 241.7 kN/m2
Passive at 8500 mm below GL in soil 2; p’p42 = Kp2 × OB’p42 + γG,f × γw × (dL4 – max(ds, dw)) = 187.0 kN/m2
Passive at 11544 mm below GL in soil 2; p’p51 = Kp2 × OB’p51 + γG,f × γw × (dL5 – max(ds, dw)) = 340.4 kN/m2
By iteration the depth at which the active moments equal the passive moments has been determined as 11544 mm as follows:-
Active moment about 11544 mm
Moment level 1;Ma11 = 0.5 × p’a11 × ha1 × ((H – dL2) + 2/3 × ha1) = 36.9 kNm/m
Moment level 1; Ma12 = 0.5 × p’a21 × ha1 × ((H – dL2) + 1/3 × ha1) = 106.7 kNm/m
Moment level 2; Ma21 = 0.5 × p’a21 × ha2 × ((H – dL3) + 2/3 × ha2) = 155.3 kNm/m
Moment level 2; Ma22 = 0.5 × p’a31 × ha2 × ((H – dL3) + 1/3 × ha2) = 563.5 kNm/m
Moment level 3; Ma31 = 0.5 × p’a31 × ha3 × ((H – dL4) + 2/3 × ha3) = 731.8 kNm/m
Moment level 3; Ma32 = 0.5 × p’a41 × ha3 × ((H – dL4) + 1/3 × ha3) = 1292.3 kNm/m
Moment level 4; Ma41 = 0.5 × p’a42 × ha4 × ((H – dL5) + 2/3 × ha4) = 404.0 kNm/m
Moment level 4; Ma42 = 0.5 × p’a51 × ha4 × ((H – dL5) + 1/3 × ha4) = 283.8 kNm/m
Passive moment about 11544 mm
Moment level 3; Mp31 = 0.5 × p’p31 × hp3 × ((H – dL4) + 2/3 × hp3) = 0.0 kNm/m
Moment level 3; Mp32 = 0.5 × p’p41 × hp3 × ((H – dL4) + 1/3 × hp3) = 2471.0 kNm/m
Moment level 4; Mp41 = 0.5 × p’p42 × hp4 × ((H – dL5) + 2/3 × hp4) = 577.6 kNm/m
Moment level 4; Mp42 = 0.5 × p’p51 × hp4 × ((H – dL5) + 1/3 × hp4) = 525.7 kNm/m
Total moments about 11544 mm
Total active moment; SMa = 3574.5 kNm/m
Total passive moment; SMp = 3574.5 kNm/m
Required pile length
Length of pile required to balance moments; H = 11544 mm
Depth of equal pressure; dcontra = 5432 mm
Add 20% below this point; de_add = 1.2 × (H – dcontra) = 7334 mm
Minimum required pile length; Htotal = dcontra + de_add = 12766 mm
Pass – Provided length of sheet pile greater than the minimum required length of the pile
Pile capacity (EN1993-5)
Maximum moment in pile (from analysis); Mpile = max(abs(Mmin), abs(Mmax)) / 1m = 547.0 kNm/m
Maximum shear force in pile (from analysis); Vpile = 364.7 kN/m
Nominal yield strength of pile; fy_pile = 355 N/mm2
Name of sheet pile; Arcelor PU(18)
Classification of pile; 2
Plastic modulus of pile; Wpl.y = 2134 cm3/m
Shear buckling of web (cl.5.2.2(6))
Width of section; c = h / sin(αpile) = 510 mm
Thickness of web; tw = s = 9.0 mm
ε = √(235/fy_pile) = 0.814
c/tw = 56.6 = 69.6ε < 72ε
PASS – Shear buckling of web within limits
Bending 2
Interlock reduction factor (cl.5.2.2); βB = 1
Design bending resistance (eqn.5.2);
Mc,Rd = Wpl.y × fy_pile × βB / γM0 = 757.6 kNm/m
PASS – Moment capacity exceeds moment in pile
Shear
Projected shear area of web (eqn.5.6); Av = s × (h – t) = 3769 mm2
Design shear resistance (eqn.5.5); Vpl,Rd = Av × fy_pile / (√(3) × γM0) / b = 1287.6 kN/m
PASS – Shear capacity exceeds shear in pile
Partial factors on actions – Section A.3.1 – Combination 2
Permanent unfavourable action; γG = 1.00
Permanent favourable action; γG,f = 1.00
Variable unfavourable action; γQ = 1.30
Angle of shearing resistance; γϕ’ = 1.25
Weight density; γγ = 1.00
Design soil properties – soil 1
Design effective shearing resistance angle; ϕ’d = tan-1(tan(ϕ’k)/γϕ’) = 24.8 deg
Design wall friction angle; δd = tan-1(tan(δk)/γϕ’) = 16.2 deg
Design moist density of retained soil; γm.d1 = γm/γγ = 15.0 kN/m3
Design saturated density of retained soil; γs.d1 = γs/γγ = 17.0 kN/m3
Design buoyant density of retained soil; γd.d1 = γs.d1 – γw = 7.2 kN/m3
Active pressure using Coulomb theory; Ka1 = sin(α + ϕ’d)2 / (sin(α)2 × sin(α – δd) × (1 + √(sin(ϕ’d + δd) × sin(ϕ’d – β)/(sin(α – δd) ´ sin(α + β))))2) = 0.364
Passive pressure using Coulomb theory; Kp1 = sin(90 – ϕ’d)2 / (sin(90 + δd) × [1 – √[sin(ϕ’d + δd) × sin(ϕ’d) / (sin(90 + δd))]]2) = 3.977
Design soil properties – soil 2
Design effective shearing resistance angle; ϕ’d2 = tan-1(tan(ϕ’k)/γϕ’) = 22.2 deg
Design wall friction angle; δd2 = tan-1(tan(δk)/γϕ’) = 12.9 deg
Design moist density of retained soil; γm.d2 = γm/γγ = 16.0 kN/m3
Design saturated density of retained soil; γs.d2 = γs/γγ = 19.0 kN/m3
Design buoyant density of retained soil; γd.d2 = γs.d2 – γw = 9.2 kN/m3
Active pressure using Coulomb theory; Ka2 = sin(α + ϕ’d)2 / (sin(α)2 × sin(α – δd) × (1 + √(sin(ϕ’d + δd) × sin(ϕ’d – β) / (sin(α – δd) × sin(α + β))))2) = 0.406
Passive pressure using Coulomb theory; Kp2 = sin(90 – ϕ’d)2 / (sin(90 + δd) × [1 – √[sin(ϕ’d + δd) × sin(f’d) / (sin(90 + δd))]]2) = 3.154
Overburden on the active side
Overburden at 0 mm below GL in soil 1; OB’a11 = po,Q × γQ = 13.0 kN/m2
Overburden at 1500 mm below GL in soil 1; OB’a21 = γG × γm.d1 × ha1 + OB’a11 = 35.5 kN/m2
Overburden at 4000 mm below GL in soil 1; OB’a31 = γG × γd.d1 × ha2 + OB’a21 = 53.5 kN/m2
Overburden at 8500 mm below GL in soil 1; OB’a41 = γG × γd.d1 × ha3 + OB’a31 = 85.8 kN/m2
Overburden at 8500 mm below GL in soil 2; OB’a42 = γG × γd.d1 × ha3 + OB’a31 = 85.8 kN/m2
Overburden at 12532 mm below GL in soil 2;OB’a51 = γG × γd.d2 × ha4 + OB’a42 = 122.9 kN/m2
Overburden on the passive side
Overburden at 4000 mm below GL in soil 1; OB’p31 = 0 kN/m2 = 0.0 kN/m2
Overburden at 8500 mm below GL in soil 1; OB’p41 = γG,f × γd.d1 × hp3 + OB’p31 = 32.4 kN/m2
Overburden at 8500 mm below GL in soil 2; OB’p42 = γG,f × γd.d1 × hp3 + OB’p31 = 32.4 kN/m2
Overburden at 12532 mm below GL in soil 2;OB’p51 = γG,f × γd.d2 × hp4 + OB’p42 = 69.4 kN/m2
Pressure on the active side
Active at 0 mm below GL in soil 1; p’a11 = Ka1 × OB’a11 = 4.7 kN/m2
Active at 1500 mm below GL in soil 1; p’a21 = Ka1 × OB’a21 = 12.9 kN/m2
Active at 4000 mm below GL in soil 1; p’a31 = Ka1 × OB’a31 + γG × γw × (dL3 – dw) = 44.0 kN/m2
Active at 8500 mm below GL in soil 1; p’a41 = Ka1 × OB’a41 + γG × γw × (dL4 – dw) = 99.9 kN/m2
Active at 8500 mm below GL in soil 2; p’a42 = Ka2 × OB’a42 + γG × γw × (dL4 – dw) = 103.5 kN/m2
Active at 12532 mm below GL in soil 2; p’a51 = Ka2 × OB’a51 + γG × γw × (dL5 – dw) = 158.1 kN/m2
Pressure on the passive side
Passive at 4000 mm below GL in soil 1; p’p31 = Kp1 × OB’p31 + γG,f × γw × (dL3 – max(ds, dw)) = 0.0 kN/m2
Passive at 8500 mm below GL in soil 1; p’p41 = Kp1 × OB’p41 + γG,f × γw × (dL4 – max(ds, dw)) = 172.8 kN/m2
Passive at 8500 mm below GL in soil 2;p’p42 = Kp2 × OB’p42 + γG,f × γw × (dL4 – max(ds, dw)) = 146.2 kN/m2
Passive at 12532 mm below GL in soil 2; p’p51 = Kp2 × OB’p51 + γG,f × γw × (dL5 – max(ds, dw)) = 302.7 kN/m2
By iteration the depth at which the active moments equal the passive moments has been determined as 12533 mm as follows:-
Active moment about 12533 mm
Moment level 1; Ma11 = 0.5 × p’a11 × ha1 × ((H – dL2) + 2/3 × ha1) = 42.7 kNm/m
Moment level 1; Ma12 = 0.5 × p’a21 × ha1 × ((H – dL2) + 1/3 × ha1) = 111.8 kNm/m
Moment level 2; Ma21 = 0.5 × p’a21 × ha2 × ((H – dL3) + 2/3 × ha2) = 164.8 kNm/m
Moment level 2; Ma22 = 0.5 × p’a31 × ha2 × ((H – dL3) + 1/3 × ha2) = 515.1 kNm/m
Moment level 3; Ma31 = 0.5 × p’a31 × ha3 × ((H – dL4) + 2/3 × ha3) = 696.2 kNm/m
Moment level 3; Ma32 = 0.5 × p’a41 × ha3 × ((H – dL4) + 1/3 × ha3) = 1244.0 kNm/m
Moment level 4; Ma41 = 0.5 × p’a42 × ha4 × ((H – dL5) + 2/3 × ha4) = 561.3 kNm/m
Moment level 4; Ma42 = 0.5 × p’a51 × ha4 × ((H – dL5) + 1/3 × ha4) = 428.7 kNm/m
Passive moment about 12533 mm
Moment level 3; Mp31 = 0.5 × p’p31 × hp3 × ((H – dL4) + 2/3 × hp3) = 0.0 kNm/m
Moment level 3; Mp32 = 0.5 × p’p41 × hp3 × ((H – dL4) + 1/3 × hp3) = 2151.5 kNm/m
Moment level 4; Mp41 = 0.5 × p’p42 × hp4 × ((H – dL5) + 2/3 × hp4) = 792.7 kNm/m
Moment level 4; Mp42 = 0.5 × p’p51 × hp4 × ((H – dL5) + 1/3 × hp4) = 820.5 kNm/m
Total moments about 12533 mm
Total active moment; SMa = 3763.9 kNm/m
Total passive moment; SMp = 3763.7 kNm/m
Required pile length
Length of pile required to balance moments; H = 12533 mm
Depth of equal pressure; dcontra = 5694 mm
Add 20% below this point; de_add = 1.2 × (H – dcontra) = 8207 mm
Minimum required pile length; Htotal = dcontra + de_add = 13901 mm
PASS – Provided length of sheet pile greater than the minimum required length of pile
Pile capacity (EN1993-5)
Maximum moment in pile (from analysis); Mpile = max(abs(Mmin), abs(Mmax)) / 1m = 549.1 kNm/m
Maximum shear force in pile (from analysis); Vpile = 358.1 kN/m
Nominal yield strength of pile; fy_pile = 355 N/mm2
Name of pile; Arcelor PU(18)
Classification of pile; 2
Plastic modulus of pile; Wpl.y = 2134 cm3/m
Shear buckling of web (cl.5.2.2(6))
Width of section; c = h / sin(apile) = 510 mm
Thickness of web; tw = s = 9.0 mm
ε = √(235/fy_pile)= 0.814
c / tw = 56.6 = 69.6ε < 72ε
PASS – Shear buckling of web within limits
Bending
Interlock reduction factor (cl.5.2.2); βB = 1
Design bending resistance (eqn.5.2);Mc,Rd = Wpl.y × fy_pile × βB / γM0 = 757.6 kNm/m
PASS – Moment capacity exceeds moment in pile
Shear
Projected shear area of web (eqn.5.6); Av = s × (h – t) = 3769 mm2
Design shear resistance (eqn.5.5); Vpl,Rd = Av × fy_pile / (√(3) × γM0) / b = 1287.6 kN/m
PASS – Shear capacity exceeds shear in the pile
To obtain this article in PDF format, click HERE (premium, but very affordable).
Hello Obinna,
What of the structural drawing?
Good afternoon.
Regards,
Andy
rate of Sheet pile up to 4.0m depth